Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Neurología (Barc., Ed. impr.) ; 39(3): 244-253, Abr. 2024. ilus, tab, graf
Artículo en Español | IBECS | ID: ibc-231690

RESUMEN

Introducción: La relación entre la corteza entorrinal y el hipocampo ha sido estudiada por diferentes autores, que han destacado la importancia de las células de cuadrícula, las células de posicionamiento y la conexión trisináptica en los procesos que regulan: la persistencia de la memoria espacial, explícita y reciente, y su posible afección con el envejecimiento. Objetivo: Observar si existen diferencias en el tamaño y número de células de cuadrícula contenidas en la lámina iii de la corteza entorrinal y en la capa granular del giro dentado del hipocampo de pacientes mayores. Métodos: Realizamos estudios posmortem del cerebro de 6 sujetos de edades comprendidas entre los 56 y 87 años. Los cortes de cerebros que contenían el giro dentado del hipocampo y la corteza entorrinal adyacente se tiñeron con el método de Klüver-Barrera, después se midió, mediante el programa Image J, el área neuronal individual, el área neuronal total, así como el número de neuronas, contenidas en cuadrículas rectangulares a nivel de la lámina iii de la corteza entorrinal y la lámina ii del giro dentado y se llevó a cabo un análisis estadístico. Resultados: Se ha observado una reducción de la población celular de la capa piramidal externa de la corteza entorrinal, así como de las neuronas de la capa granular del giro dentado relacionada con el envejecimiento. Conclusión: Nuestros resultados indican que el envejecimiento produce una disminución en el tamaño y la densidad neuronal en las células de cuadrícula de la corteza entorrinal y de posicionamiento del giro dentado.(AU)


Introduction: The relationship between the entorhinal cortex and the hippocampus has been studied by different authors, who have highlighted the importance of grid cells, place cells, and the trisynaptic circuit in the processes that they regulate: the persistence of spatial, explicit, and recent memory and their possible impairment with ageing. Objective: We aimed to determine whether older age causes changes in the size and number of grid cells contained in layer III of the entorhinal cortex and in the granular layer of the dentate gyrus of the hippocampus. Methods: We conducted post-mortem studies of the brains of 6 individuals aged 56-87 years. The brain sections containing the dentate gyrus and the adjacent entorhinal cortex were stained according to the Klüver-Barrera method, then the Image J software was used to measure the individual neuronal area, the total neuronal area, and the number of neurons contained in rectangular areas in layer III of the entorhinal cortex and layer II of the dentate gyrus. Statistical analysis was subsequently performed. Results: We observed an age-related reduction in the cell population of the external pyramidal layer of the entorhinal cortex, and in the number of neurons in the granular layer of the dentate gyrus. Conclusion: Our results indicate that ageing causes a decrease in the size and density of grid cells of the entorhinal cortex and place cells of the dentate gyrus.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Corteza Entorrinal , Hipocampo , Memoria Espacial , Neurología , Enfermedades del Sistema Nervioso
2.
Proc Natl Acad Sci U S A ; 121(12): e2315758121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38489383

RESUMEN

Grid cells in the entorhinal cortex (EC) encode an individual's location in space, integrating both environmental and multisensory bodily cues. Notably, body-derived signals are also primary signals for the sense of self. While studies have demonstrated that continuous application of visuo-tactile bodily stimuli can induce perceptual shifts in self-location, it remains unexplored whether these illusory changes suffice to trigger grid cell-like representation (GCLR) within the EC, and how this compares to GCLR during conventional virtual navigation. To address this, we systematically induced illusory drifts in self-location toward controlled directions using visuo-tactile bodily stimulation, while maintaining the subjects' visual viewpoint fixed (absent conventional virtual navigation). Subsequently, we evaluated the corresponding GCLR in the EC through functional MRI analysis. Our results reveal that illusory changes in perceived self-location (independent of changes in environmental navigation cues) can indeed evoke entorhinal GCLR, correlating in strength with the magnitude of perceived self-location, and characterized by similar grid orientation as during conventional virtual navigation in the same virtual room. These data demonstrate that the same grid-like representation is recruited when navigating based on environmental, mainly visual cues, or when experiencing illusory forward drifts in self-location, driven by perceptual multisensory bodily cues.


Asunto(s)
Células de Red , Ilusiones , Navegación Espacial , Humanos , Corteza Entorrinal/fisiología , Células de Red/fisiología , Estado de Conciencia , Ilusiones/fisiología , Tacto , Navegación Espacial/fisiología
3.
Learn Behav ; 52(1): 19-34, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38231426

RESUMEN

The cognitive map, proposed by Tolman in the 1940s, is a hypothetical internal representation of space constructed by the brain to enable an animal to undertake flexible spatial behaviors such as navigation. The subsequent discovery of place cells in the hippocampus of rats suggested that such a map-like representation does exist, and also provided a tool with which to explore its properties. Single-neuron studies in rodents conducted in small singular spaces have suggested that the map is founded on a metric framework, preserving distances and directions in an abstract representational format. An open question is whether this metric structure pertains over extended, often complexly structured real-world space. The data reviewed here suggest that this is not the case. The emerging picture is that instead of being a single, unified construct, the map is a mosaic of fragments that are heterogeneous, variably metric, multiply scaled, and sometimes laid on top of each other. Important organizing factors within and between fragments include boundaries, context, compass direction, and gravity. The map functions not to provide a comprehensive and precise rendering of the environment but rather to support adaptive behavior, tailored to the species and situation.


Asunto(s)
Encéfalo , Navegación Espacial , Ratas , Animales , Encéfalo/fisiología , Hipocampo/fisiología , Conducta Espacial , Mapeo Encefálico/veterinaria , Cognición/fisiología , Percepción Espacial/fisiología , Navegación Espacial/fisiología , Mamíferos
4.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37398455

RESUMEN

Spatial periodicity in grid cell firing has been interpreted as a neural metric for space providing animals with a coordinate system in navigating physical and mental spaces. However, the specific computational problem being solved by grid cells has remained elusive. Here, we provide mathematical proof that spatial periodicity in grid cell firing is the only possible solution to a neural sequence code of 2-D trajectories and that the hexagonal firing pattern of grid cells is the most parsimonious solution to such a sequence code. We thereby provide a teleological cause for the existence of grid cells and reveal the underlying nature of the global geometric organization in grid maps as a direct consequence of a simple local sequence code. A sequence code by grid cells provides intuitive explanations for many previously puzzling experimental observations and may transform our thinking about grid cells.

5.
Biosystems ; 235: 105091, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040283

RESUMEN

A normative model for the emergence of entorhinal grid cells in the brain's navigational system has been proposed (Sorscher et al., 2023. Neuron 111, 121-137). Using computational modeling of place-to-grid cell interactions, the authors characterized the fundamental nature of grid cells through information processing. However, the normative model does not consider certain discoveries that complement or contradict the conditions for such emergence. By briefly reviewing current evidence, we draw some implications on the interplay between place cell replay sequences and intrinsic grid cell oscillations related to the hippocampal-entorhinal navigation system that can extend the normative model.


Asunto(s)
Corteza Entorrinal , Hipocampo , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Cognición , Simulación por Computador , Modelos Neurológicos
6.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37986767

RESUMEN

The medial entorhinal cortex (MEC) is hypothesized to function as a cognitive map for memory-guided navigation. How this map develops during learning and influences memory remains unclear. By imaging MEC calcium dynamics while mice successfully learned a novel virtual environment over ten days, we discovered that the dynamics gradually became more spatially consistent and then stabilized. Additionally, grid cells in the MEC not only exhibited improved spatial tuning consistency, but also maintained stable phase relationships, suggesting a network mechanism involving synaptic plasticity and rigid recurrent connectivity to shape grid cell activity during learning. Increased c-Fos expression in the MEC in novel environments further supports the induction of synaptic plasticity. Unsuccessful learning lacked these activity features, indicating that a consistent map is specific for effective spatial memory. Finally, optogenetically disrupting spatial consistency of the map impaired memory-guided navigation in a well-learned environment. Thus, we demonstrate that the establishment of a spatially consistent MEC map across learning both correlates with, and is necessary for, successful spatial memory.

7.
Front Comput Neurosci ; 17: 1242300, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881247

RESUMEN

We propose a mechanism enabling the appearance of border cells-neurons firing at the boundaries of the navigated enclosures. The approach is based on the recent discovery of discrete complex analysis on a triangular lattice, which allows constructing discrete epitomes of complex-analytic functions and making use of their inherent ability to attain maximal values at the boundaries of generic lattice domains. As it turns out, certain elements of the discrete-complex framework readily appear in the oscillatory models of grid cells. We demonstrate that these models can extend further, producing cells that increase their activity toward the frontiers of the navigated environments. We also construct a network model of neurons with border-bound firing that conforms with the oscillatory models.

8.
Cell Rep ; 42(10): 113209, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37804506

RESUMEN

Grid-cells firing fields tile the environment with a 6-fold periodicity during both locomotion and visual exploration. Here, we tested, in humans, whether movements of covert attention elicit grid-like coding using frequency tagging. Participants observed visual trajectories presented sequentially at fixed rate, allowing different spatial periodicities (e.g., 4-, 6-, and 8-fold) to have corresponding temporal periodicities (e.g., 1, 1.5, and 2 Hz), thus resulting in distinct spectral responses. We found a higher response for the (grid-like) 6-fold periodicity and localized this effect in medial-temporal sources. In a control experiment featuring the same temporal periodicity but lacking spatial structure, the 6-fold effect did not emerge, suggesting its dependency on spatial movements of attention. We report evidence that grid-like signals in the human medial-temporal lobe can be elicited by covert attentional movements and suggest that attentional coding may provide a suitable mechanism to support the activation of cognitive maps during conceptual navigation.


Asunto(s)
Atención , Lóbulo Temporal , Humanos , Atención/fisiología , Locomoción , Sistemas de Computación , Electrodos , Corteza Entorrinal/fisiología
9.
Curr Biol ; 33(21): 4650-4661.e7, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37827151

RESUMEN

Path integration (PI) is impaired early in Alzheimer's disease (AD) but reflects multiple sub-processes that may be differentially sensitive to AD. To characterize these sub-processes, we developed a novel generative linear-angular model of PI (GLAMPI) to fit the inbound paths of healthy elderly participants performing triangle completion, a popular PI task, in immersive virtual reality with real movement. The model fits seven parameters reflecting the encoding, calculation, and production errors associated with inaccuracies in PI. We compared these parameters across younger and older participants and patients with mild cognitive impairment (MCI), including those with (MCI+) and without (MCI-) cerebrospinal fluid biomarkers of AD neuropathology. MCI patients showed overestimation of the angular turn in the outbound path and more variable inbound distances and directions compared with healthy elderly. MCI+ were best distinguished from MCI- patients by overestimation of outbound turns and more variable inbound directions. Our results suggest that overestimation of turning underlies the PI errors seen in patients with early AD, indicating specific neural pathways and diagnostic behaviors for further research.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Pruebas Neuropsicológicas , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Biomarcadores
10.
Biomimetics (Basel) ; 8(5)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37754150

RESUMEN

The ability to navigate effectively in a rich and complex world is crucial for the survival of all animals. Specialist neural structures have evolved that are implicated in facilitating this ability, one such structure being the ring attractor network. In this study, we model a trio of Spiking Neural Network (SNN) ring attractors as part of a bio-inspired navigation system to maintain an internal estimate of planar translation of an artificial agent. This estimate is dynamically calibrated using a memory recall system of landmark-free allotheic multisensory experiences. We demonstrate that the SNN-based ring attractor system can accurately model motion through 2D space by integrating ideothetic velocity information and use recalled allothetic experiences as a positive corrective mechanism. This SNN based navigation system has potential for use in mobile robotics applications where power supply is limited and external sensory information is intermittent or unreliable.

11.
Hippocampus ; 33(12): 1235-1251, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37749821

RESUMEN

We present practical solutions to applying Gaussian-process (GP) methods to calculate spatial statistics for grid cells in large environments. GPs are a data efficient approach to inferring neural tuning as a function of time, space, and other variables. We discuss how to design appropriate kernels for grid cells, and show that a variational Bayesian approach to log-Gaussian Poisson models can be calculated quickly. This class of models has closed-form expressions for the evidence lower-bound, and can be estimated rapidly for certain parameterizations of the posterior covariance. We provide an implementation that operates in a low-rank spatial frequency subspace for further acceleration, and demonstrate these methods on experimental data.


Asunto(s)
Células de Red , Teorema de Bayes , Distribución Normal
12.
Neurobiol Stress ; 26: 100561, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37576349

RESUMEN

Acute stress exerts substantial effects on episodic memory, which are often mediated by glucocorticoids, the end-product of the hypothalamic-pituitary-adrenal axis. Surprisingly little is known, however, about the influence of acute stress on human spatial navigation. One specific navigational strategy is path integration, which is linked to the medial entorhinal cortex, a region harboring glucocorticoid receptors and thus susceptible for stress effects. Here, we investigated effects of acute stress on path integration performance using a virtual homing task. We divided a sample of healthy young male participants into a stress group (nstress = 32) and a control group (ncontrol = 34). The stress group underwent the socially evaluated cold-pressor test, while the control group underwent a non-stressful control procedure. Stress induction was confirmed via physiological and subjective markers, including an increase of salivary cortisol concentrations. We applied linear mixed models to investigate the effect of acute stress on path integration depending on task difficulty and the presence or absence of spatial cues. These analyses revealed that stress impaired path integration especially in trials with high difficulty and led to greater decline of performance upon removal of spatial cues. Stress-induced deficits were strongly related to impaired distance estimation, and to a lesser extent to compromised rotation estimation. These behavioral findings are in accordance with the hypothesis that acute stress impairs path integration processes, potentially by affecting the entorhinal grid cell system. More generally, the current data suggests acute stress to impair cognitive functions mediated by medial temporal lobe regions outside the hippocampus.

13.
Neurologia (Engl Ed) ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37442425

RESUMEN

INTRODUCTION: The relationship between the entorhinal cortex (EC) and the hippocampus has been studied by different authors, who have highlighted the importance of grid cells, place cells, and the trisynaptic circuit in the processes that they regulate: the persistence of spatial, explicit, and recent memory and their possible impairment with ageing. OBJECTIVE: We aimed to determine whether older age causes changes in the size and number of grid cells contained in layer III of the EC and in the granular layer of the dentate gyrus (DG) of the hippocampus. METHODS: We conducted post-mortem studies of the brains of 6 individuals aged 56-87 years. The brain sections containing the DG and the adjacent EC were stained according to the Klüver-Barrera method, then the ImageJ software was used to measure the individual neuronal area, the total neuronal area, and the number of neurons contained in rectangular areas in layer III of the EC and layer II of the DG. Statistical analysis was subsequently performed. RESULTS: We observed an age-related reduction in the cell population of the external pyramidal layer of the EC, and in the number of neurons in the granular layer of the DG. CONCLUSION: Our results indicate that ageing causes a decrease in the size and density of grid cells of the EC and place cells of the DG.

14.
Curr Biol ; 33(17): 3561-3570.e4, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37506703

RESUMEN

Olfactory navigation is universal across the animal kingdom. Humans, however, have rarely been considered in this context. Here, we combined olfactometry techniques, virtual reality (VR) software, and neuroimaging methods to investigate whether humans can navigate an olfactory landscape by learning the spatial relationships among discrete odor cues and integrating this knowledge into a spatial map. Our data show that over time, participants improved their performance on the odor navigation task by taking more direct paths toward targets and completing more trials within a given time period. This suggests that humans can successfully navigate a complex odorous environment, reinforcing the notion of human olfactory navigation. fMRI data collected during the olfactory navigation task revealed the emergence of grid-like responses in entorhinal and piriform cortices that were attuned to the same grid orientation. This result implies the existence of a specialized olfactory grid network tasked with guiding spatial navigation based on odor landmarks.


Asunto(s)
Corteza Piriforme , Navegación Espacial , Animales , Humanos , Odorantes , Corteza Entorrinal/fisiología , Olfato , Aprendizaje , Navegación Espacial/fisiología
15.
Curr Biol ; 33(12): 2425-2437.e5, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37220744

RESUMEN

Converging evidence from human and rodent studies suggests that disrupted grid cell coding in the medial entorhinal cortex (MEC) underlies path integration behavioral deficits during early Alzheimer's disease (AD). However, grid cell firing relies on both self-motion cues and environmental features, and it remains unclear whether disrupted grid coding can account for specific path integration deficits reported during early AD. Here, we report in the J20 transgenic amyloid beta (Aß) mouse model of early AD that grid cells were spatially unstable toward the center of the arena, had qualitatively different spatial components that aligned parallel to the borders of the environment, and exhibited impaired integration of distance traveled via reduced theta phase precession. Our results suggest that disrupted early AD grid coding reflects reduced integration of self-motion cues but not environmental information via geometric boundaries, providing evidence that grid cell impairments underlie path integration deficits during early AD.


Asunto(s)
Enfermedad de Alzheimer , Señales (Psicología) , Humanos , Ratones , Animales , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Ratones Transgénicos , Modelos Animales de Enfermedad , Corteza Entorrinal , Potenciales de Acción
16.
Front Neuroinform ; 17: 1134405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970657

RESUMEN

Reinforcement learning (RL) has become a popular paradigm for modeling animal behavior, analyzing neuronal representations, and studying their emergence during learning. This development has been fueled by advances in understanding the role of RL in both the brain and artificial intelligence. However, while in machine learning a set of tools and standardized benchmarks facilitate the development of new methods and their comparison to existing ones, in neuroscience, the software infrastructure is much more fragmented. Even if sharing theoretical principles, computational studies rarely share software frameworks, thereby impeding the integration or comparison of different results. Machine learning tools are also difficult to port to computational neuroscience since the experimental requirements are usually not well aligned. To address these challenges we introduce CoBeL-RL, a closed-loop simulator of complex behavior and learning based on RL and deep neural networks. It provides a neuroscience-oriented framework for efficiently setting up and running simulations. CoBeL-RL offers a set of virtual environments, e.g., T-maze and Morris water maze, which can be simulated at different levels of abstraction, e.g., a simple gridworld or a 3D environment with complex visual stimuli, and set up using intuitive GUI tools. A range of RL algorithms, e.g., Dyna-Q and deep Q-network algorithms, is provided and can be easily extended. CoBeL-RL provides tools for monitoring and analyzing behavior and unit activity, and allows for fine-grained control of the simulation via interfaces to relevant points in its closed-loop. In summary, CoBeL-RL fills an important gap in the software toolbox of computational neuroscience.

17.
Behav Brain Res ; 442: 114305, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36682499

RESUMEN

Repeated exposure to stress (chronic stress) can cause excess levels of circulating cortisol and has detrimental influences on various cognitive functions including long-term memory and navigation. However, it remains an open question whether chronic stress affects path integration, a navigational strategy that presumably relies on the functioning of grid cells in the medial entorhinal cortex. The entorhinal cortex is a brain region in the medial temporal lobe, which contains multiple cell types involved in spatial navigation (and episodic memory), and a high number of corticosteroid receptors, predisposing it as a potential target of cortisol effects. Here, our goal was to investigate the association between chronic stress and path integration performance. We assessed chronic stress via hair cortisol concentration (physiological measure) and the Perceived Stress Questionnaire (subjective measure) in 52 female participants aged 22-65 years. Path integration was measured using a virtual homing task. Linear mixed models revealed selective impairments associated with chronic stress that depended on error type and environmental features. When focusing on distance estimations in the path integration task, we observed a significant relationship to hair cortisol concentrations indicating impaired path integration particularly during trials with higher difficulty in participants with high hair cortisol concentrations. This relationship especially emerged in the absence of spatial cues (a boundary or a landmark), and particularly in participants who reported high levels of subjectively experienced chronic stress. The findings are in line with the hypothesis that chronic stress compromises path integration, possibly via an effect on the entorhinal grid cell system.


Asunto(s)
Hidrocortisona , Navegación Espacial , Humanos , Femenino , Corteza Entorrinal/fisiología , Lóbulo Temporal , Cognición/fisiología , Señales (Psicología) , Navegación Espacial/fisiología
18.
Neuron ; 111(1): 121-137.e13, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36306779

RESUMEN

The discovery of entorhinal grid cells has generated considerable interest in how and why hexagonal firing fields might emerge in a generic manner from neural circuits, and what their computational significance might be. Here, we forge a link between the problem of path integration and the existence of hexagonal grids, by demonstrating that such grids arise in neural networks trained to path integrate under simple biologically plausible constraints. Moreover, we develop a unifying theory for why hexagonal grids are ubiquitous in path-integrator circuits. Such trained networks also yield powerful mechanistic hypotheses, exhibiting realistic levels of biological variability not captured by hand-designed models. We furthermore develop methods to analyze the connectome and activity maps of our networks to elucidate fundamental mechanisms underlying path integration. These methods provide a road map to go from connectomic and physiological measurements to conceptual understanding in a manner that could generalize to other settings.


Asunto(s)
Células de Red , Células de Red/fisiología , Corteza Entorrinal/fisiología , Modelos Neurológicos , Redes Neurales de la Computación , Sistemas de Computación
19.
Trends Neurosci ; 46(2): 124-136, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36513524

RESUMEN

The entorhinal cortex (EC) is the brain region that often exhibits the earliest histological alterations in Alzheimer's disease (AD), including the formation of neurofibrillary tangles and cell death. Recently, brain imaging studies from preclinical AD patients and electrophysiological recordings from AD animal models have shown that impaired neuronal activity in the EC precedes neurodegeneration. This implies that memory impairments and spatial navigation deficits at the initial stage of AD are likely caused by activity dysfunction rather than by cell death. This review focuses on recent findings on EC dysfunction in AD, and discusses the potential pathways for mitigating AD progression by protecting the EC.


Asunto(s)
Enfermedad de Alzheimer , Animales , Enfermedad de Alzheimer/metabolismo , Corteza Entorrinal , Ovillos Neurofibrilares/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo
20.
Philos Trans R Soc Lond B Biol Sci ; 378(1869): 20210452, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36511410

RESUMEN

The neural coding of space centres on three foundational cell types: place cells, head direction cells and grid cells. One notable characteristic of these neurons is the symmetry properties of their spatial firing patterns. In symmetric environments, firing patterns are often also symmetric: for example, place cells show translational symmetry in aligned sub-compartments of a multi-compartment environment. A single head direction cell has a mirror-symmetric firing pattern, while a sub-class of head direction cells can show multi-fold rotational symmetries in multi-compartment environments, matching the symmetry of the recently experienced environment. The entorhinal grid cells are notable for the symmetry of their firing patterns in both rotational and translational domains. However, these symmetries are broken in a variety of situations. These symmetry-making and -breaking observations shed light on the underlying computations that generate these firing patterns, and also invite speculation as to whether they may have a functional role. This article outlines these findings and speculates on the consequences of the resultant firing symmetries and asymmetries for spatial coding and cognition. This article is part of a discussion meeting issue 'New approaches to 3D vision'.


Asunto(s)
Corteza Entorrinal , Percepción Espacial , Corteza Entorrinal/fisiología , Percepción Espacial/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...